

Hydrogen Fuel Safety

Properties, Practices, Peace of Mind

Safety Assurance

- Hydrogen Safety Panel
- Hydrogen Safety Codes and Standards
- Hydrogen Safety Devices and Systems
- Hydrogen Certification Procedures

Molecular Hydrogen

GM What is Hydrogen?

- The most abundant element in the known universe
 - Makes up almost 75% of all matter
 - An energy carrier like electricity or gasoline
- The lightest and most energy dense molecule
- Not an energy source because it is not found on Earth by itself
- Must be created through,
 - Electrolysis (green hydrogen)
 - Steam methane reforming (gray hydrogen)
 - Pyrolysis (green/gray hydrogen)
- Has been used as an industrial chemical for ~150 years
 - 50 million metric tons produced annually

Hydrogen Properties and Behavior

- A gas at normal atmospheric conditions conditions
- A cryogenic liquid at -427°F (-253°C)
- Rapidly disperses when released
 - Rises at a speed of 20 meters/second (66 feet/second)
- Colorless, Odorless, Non-toxic
- Flammable, Asphyxiant

Hydrogen Comparison

	Hydrogen	Natural Gas	Gasoline
Color	No	Νο	Yes
Toxicity	None	Some	High
Odor	No	Mercaptan (Sulfur)	Yes
Buoyancy Relative to Air	14X Lighter	2X Lighter	3.75X Heavier
Energy by Weight	2.8X > Gasoline	~1.2X > Gasoline	43 MJ/kg
Energy by Volume	4X < Gasoline	1.5X < Gasoline	120 MJ/Gallon
Spark Ignition Minimum air concentration	4.0%	5.0%	1.4%

Characteristics of a Hydrogen Flame

Smokeless

- Burning carbon creates smoke
- Gasoline releases carbon when it burns
- Invisible
- Approximately 4,000°F
- No radiant heat
 - Heat may not be felt until just a few inches away from the flame
 - Radiant heat from a gasoline fueled flame can be felt from a greater distance

Since the flame emits low levels of heat in the surrounding area the risk of secondary fires is lower.

Hydrogen Refueling Process

- H₂ is delivered in liquid (LH2) form and stored on-site
- Pumped through a vaporizer and converted to gaseous H₂
- Buffer storage of GH2 for smooth, consistent flow
- Automated control and safety system only flows hydrogen when all refueling protocol checks have been passed
- Automated GH2 dispenser
- Fill Pressure of 350 Bar (5,000 psi) or 700 Bar (10,000 psi)

- Hydrogen is no more or less dangerous than any other currently used fuel
- If anything, it has some uniquely inherent safety features
 - Disperses quickly away from ground level personnel and assets
 - Lower risk of secondary fires
 - Non-toxic and non-poisonous
- Same ignition and explosion risks (at typical concentrations) as other fuels
- Long used as an industrial chemical
 - Commercially available, proven safety devices
 - Commercially available, proven storage, delivery, and handling equipment
- Established Codes, Standards, and Safety Procedures
 - Both mature and evolving

Hydrogen Safety Panel (HSP)

- Established by the US Department of Energy (DOE) office of Energy Efficiency Renewable Energy (EERE)
- Administered by the Pacific Northwest National Laboratory (PNNL)
- Develops and maintains comprehensive hydrogen safety practices
- Establishes and conducts hydrogen system safety reviews
 - Process Hazard Analysis (PHA)
 - Process Safety Analysis (PSA)
- Administers Hydrogen Tools Portal <u>Hydrogen Tools</u>
 - Rich repository of useful information and guidelines
- HSP members come from a broad cross-section of industry and academia

Hydrogen Code and Standards

<u>Codes</u>

- NFPA 1, Fire Code
- NFPA 2, Hydrogen Technologies Code
- NFPA 55, Compressed Gases and Cryogenic Fluids
- NFPA 70, National Electric Code
- OSHA 1910.103, Gaseous and Liquid Hydrogen

Standards

- ASME VIII, Boilers and Pressure Vessels
- ASME B31.3, Process Piping
- DOT MC-338, Insulated Metal Tanks for Motor Vehicles
- SAE J2601, Hydrogen Fueling Protocol

Hydrogen Safety Devices

- Pressure and temperature relief devices
- Emergency shutdown devices
- Flame and temperature detection
- Hydrogen detectors
- Vented and explosion proof enclosures
- Isolation, check, and process valves
- Fuel breakaway couplings
- Hydrogen vent stacks
- Personnel Protection Equipment (PPE)

Hydrogen Certification Procedures

Equipment Suppliers

- Understand and apply all relevant codes and standards
- Independently produce design verification and test reports
- Engage a Nationally Recognized Test Laboratory (NRTL)
 - Perform certification tests
 - Perform Process Hazard Analysis (PHS) and Process Safety Analysis (PSA)
 - Apply appropriate corrective actions
- Engage transparently with local AHJ's and community stakeholders

Test Laboratories

- Provide timely support to equipment suppliers
- Rigorously perform testing procedures, PHA, and PSA in collaboration with suppliers
- Produce Certification Test reports
- Provide equipment Listing and Labelling services

Local AHJ

- The ultimate approval authority
- Usually the local Fire Department and Building Permitting and Inspection Office
- Engage with Suppliers and Test Labs to understand hazards, codes, and safety practices
- Evaluate compliance with codes and standards
- Implement emergency response plans

United States Department of Energy Office of energy Efficiency and Renewable Energy Office of Energy Efficiency & Renewable Energy | Department of Energy

H2 Tools

Home | H2tools | Hydrogen Tools

International Program on Chemical Safety INCHEM

Fuel Cell & Hydrogen Energy Association

Fuel Cell & Hydrogen Energy Association (fchea.org)

California Fuel Cell Partnership

Home | Hydrogen Fuel Cell Partnership (h2fcp.org)